The Serpentine Cipher, deciphered

All right, if you follow me over on Twitter, you’ll have seen, over the past few weeks, a puzzle I presented there (with hints and historical digressions) that ended with the successful decipherment of what I can now tell you is called the Serpentine Cipher – this particular word is just the word SERPENTINE. And you will certainly see that each sign certainly is serpentine-looking:

This text is super short and decipherment is certainly a challenge without hints and without some additional information. It starts with the numerical notation used by Johann Joachim Becher in his 1661 Character pro notitia linguarum universali. This was, as the Latin name suggests, one of many 17th century ‘universal language’ schemes, meant to encode concepts rather than words tied to any specific language. Becher’s system used a different number for each of 10,000 concepts, distinguished with lines and dots around a frame:

Becher’s notation wasn’t completely original to him, though. It’s a variant of the Cistercian numerals described in David King’s magisterial 2001 book, Ciphers of the Monks. The system became better known in 2020 via the Numberphile Youtube channel:

King’s book shows how this local development, in parallel to Indo-Arabic / Western ciphered-positional numerals (the digits 0-9), spread throughout European intellectual life into strange places, from volume markings on Belgian wine barrels to modern German nationalist runology. But among the more notable places you find this kind of numeration is in various ciphers, universal language schemes, and other sorts of semi-cryptic efforts to encode language in the 16th and 17th centuries. Although we now know, very firmly, that the Cistercian numerals were a medieval European invention, they were often described as ‘Chaldean’ and/or assigned considerable antiquity / mysticism.

My own contribution to this reception literature was in a post here a few years ago, Cistercian number magic of the Boy Scouts, showing how it ended up in 20th century Scouting literature:

Anyway, the Serpentine Cipher isn’t based on any of that, but is taken directly from Becher. But you can’t just use Becher’s universal cipher at this point, because a ‘universal language’ of 10,000 individual concepts is pretty damn useless. Instead, to solve it, you needed to convert the five glyphs to numbers, and then those to specific pairs of letters – so that five glyphs produces a plaintext of ten letters.

So if you got that far, you found that the five glyphs were five numerals written quasi-positionally, without a zero, in a mixture of base 5 and 10: 737, 3233, 473, 1633, and 473. The fact that the third and fifth glyphs are identical is important, but also potentially misleading. By the way, the reason you don’t need a zero is that the ‘place values’ aren’t linear, but oriented on the same frame, so you can simply leave one blank to indicate an empty space. It’s a kind of ‘orientational’ or ‘rotational’ zero-less place-value. The downside is that unlike a linear phrase it isn’t infinitely extendable.

Next, you needed to notice that each number is the product of exactly two prime factors. By the Fundamental Theorem of Arithmetic, every number is the product of some unique set of prime factors. So there’s no ambiguity: 737 is *only* 11 x 67. And by chance, there are 25 primes below 100, so, borrowing Z = 101, we can associate each prime with a letter:

  • A = 2
  • B= 3
  • C = 5
  • D = 7
  • E = 11
  • F = 13
  • G = 17
  • H = 19
  • I = 23
  • J = 29
  • K = 31
  • L = 37
  • M = 41
  • N = 43
  • O = 47
  • P = 53
  • Q = 59
  • R = 61
  • S = 67
  • T = 71
  • U = 73
  • V = 79
  • W = 83
  • X = 89
  • Y = 97
  • Z = 101

Thus, each glyph can be treated as a product, and thus as a two letter sequence. 737 = 11 (E) x 67 (S), the 5th and 19th primes. (For words like PIZZA that would use the ZZ glyph (101 x 101 = 10201) you have some different options for that fifth place-value, but these are rare enough to ignore for now). Then all you have to do is ‘serpentine’ between the two letter-pair combinations for each number to figure out which pairs lead to the solution. Voila!:

An added bonus of using the word SERPENTINE is that it illustrates one of the key (mildly) confounding properties of the cipher, namely that an identical glyph (473) always has two readings, both of which occur in this one word.

Now, note that the only glyphs that will have even values are ones that use A=2, because the product of odd numbers is always odd. This would have provided a hint – if I’d given you a word with any As in it. (You can also use A=3 … Z=103 if you like, but there will be more products >10000 then.)

Really, once you see all those 11s, it’s not a bad guess that those 11s are Es – but of course, without knowing exactly what their position is, it makes deciphering such a short text tricky. But I don’t pretend that this would stand up to serious cryptanalysis as-is.

Finally, if you have a ‘straggler’ odd letter left out at the end of a word or phrase you can either multiply three letters into a product (though that gets unwieldy, e.g., WRY = 83 X 61 X 97 = 491,111) or just have a single number (a prime) at the end. Either one of these might tip you off as to a word boundary. Of course, you don’t have to stop at word boundaries, so you can SP LI TU PT HE WO RD SI NT OP AI RS LI KE TH IS.

Anyway, thanks to all who played along. I think this is a bunch of fun, doesn’t need much more than basic arithmetic, and provides a neat digression into the history of number systems and early modern cryptography. Paul Leyland was the first correct decipherer and is thus a winner of a copy of my book, Reckonings: Numerals, Cognition, and History, which, while it is not really about ciphers at all, does have a lot of stuff relevant to number systems and early modern history.

Finally, this cipher is presented in memory of my dear friend Victor Henri Napoleon, who was one of the original decipherers of an early/experimental version of the Serpentine in 2017, and who passed away suddenly last week at the age of N (43). You will be missed, Vic!

The expanding universe of numerical systems: Rejang (x2)

How many number systems are out there? When I finished my dissertation in 2003, I described my work as analyzing “over 100” structurally distinct numerical notations. Counting them is really impossible, because no one knows what ‘structurally distinct’ means. Does it ‘count’ as a distinct system when, in Western Europe, folks started to use numeral delimiter commas (26,000 vs. 26000) or decimal points? I was hopelessly trying to give a number, without necessarily counting the dozens of decimal, positional systems of the broader Indo-Arabic family. All those systems descended from the positional variants of the Brahmi numerals that originated in early medieval India, in which all sorts of script traditions use ten signs for 0-9 but substitute local signs. We can call those all different systems, or we can not, depending on our perspective.

But then by the time my dissertation became a full-fledged book, Numerical Notation: A Comparative History, in 2010, having been poked and prodded by no fewer than 14 peer reviewers (yes, really!!!), more systems were added. I stuck with “over 100” because, well, that’s technically true, but by that point it was many more than that. And I keep finding more. There’s so much out there that hasn’t been accounted for. I was going over some notes earlier this week and there are at least 25 notations on my ‘to add’ list not described anywhere in the synthetic / comparative literature. Probably closer to 50, and counting. Part of the challenge is that these are notations that are peripheral to the concerns of the major traditions of philology, epigraphy, and the history of science. I don’t think I missed any well-known ones! Some of them may have been used by only a handful of individuals, or for a short time. But there are a lot of them – far more than I would have guessed when I started on this wild path.

In a single article (cited only four times since publication), M.A. Jaspan (1967) described not one but two numerical notation systems used by speakers and writers of Rejang, a language of southwestern Sumatra. Other than technical reports by Miller 2011 and Pandey 2018 for Unicode encoding, basically no one has ever acknowledged or discussed them:

Rejang ciphered-additive ‘ka ga nga’ alphasyllabic / aksharapallî numerical system (Jaspan 1967: 512)

This first system may look unusual, but it is part of a broad tradition of aksharapallî systems, which use the alphasyllabaries (abugidas) of South and Southeast Asia, in their customary order, to assign numerical values to specific syllables (Chrisomalis 2010: 212-213). Here, the 23 signs (with the implied vowel ‘a’) correspond to 1-9, 10-90, and 100-500, and then for the higher hundreds, two signs combine additively. This system doesn’t have a zero – each multiple of each power of the base (10) gets its own sign, so it’s what I’ve classified as ciphered-additive – like Greek, Hebrew, and Arabic alphabetic numerals, or Cherokee, Jurchin, or Sinhalese, among others. Jaspan is dead wrong in writing (1967: 512) that “It has, as far as I know, no parallel or similarity to, other known systems either in South-East Asia or elsewhere.” Aksharapallî systems were once widespread throughout South and Southeast Asia, and are used for various purposes, including pagination, which is exactly what Jaspan reports that at least some Rejang writers used them for during his fieldwork in the early 1960s.

Rejang quinary-decimal, cumulative-additive “Angka bejagung” numerical notation (Jaspan 1967: 514)

The second system is in some ways, even more striking. The system is structurally almost identical to the Roman numerals – there are signs for each power of 10, as well as the quinary halves 5 and 50. The hundreds are still additive but have some more complexities, and then the thousands don’t have a quinary component at all. These sorts of systems that rely on repeated signs within each power, and don’t use place-value, are called cumulative-additive and are very common throughout the Near East and the Mediterranean but relatively rare in East and Southeast Asia (though there are systems like the Ryukyuan suchuma that have this structure). I have absolutely no idea where it came from – unlike the first system, it doesn’t have any obvious relatives. At least for Jaspan’s consultants, it was used for keeping business accounts in the 1960s, though not widely.

The standard history of numerical notation is one where all systems gave way to a single, universalizing notation, the digits 0123456789, which spread globally without competition. And there’s certainly a point to be made there. But there is a countervailing factor, the inventive impetus under which we can expect all sorts of notations to be invented, perhaps not with global reach, but of critical importance for understanding the comparative scope of the world’s numerical systems. In my new book, Reckonings: Numerals, Cognition, and History (Chrisomalis 2020), I make the case that we are not at the ‘end of history’ of numeration – that innovation continues apace in this domain, and that focusing only on the well-known systems produces a very barren history. Cases like the Rejang numerals help produce a richer narrative – one of constant and ongoing numerical innovation.

References

Chrisomalis, Stephen. Numerical notation: A comparative history. Cambridge University Press, 2010.

Chrisomalis, Stephen. Reckonings: Numerals, cognition, and history. MIT Press, 2020.

Jaspan, Mervyn Aubrey. “Symbols at work: Aspects of kinetic and mnemonic representation in Redjang ritual.” Bijdragen tot de Taal-, Land-en Volkenkunde 4de Afl (1967): 476-516.

Miller, Christopher. “Indonesian and Philippine Scripts and extensions not yet encoded or proposed for encoding in Unicode as of version 6.0.” (2011).

Pandey, Anshuman. “Preliminary proposal to encode Rejang Numbers in Unicode.” (2018).

#ReckoningWith: diversity in notations scholarship

The #ReckoningWith project was an initiative on Twitter in conjunction with the publication of my book, Reckonings: Numerals, Cognition, and History, aimed at promoting a more diverse range of scholarship on number systems, writing systems, and notations, my core fields of study. There is a clear, almost inescapably obvious bias towards a relatively small coterie of very traditional (white, male, tenured) scholars in this area, and as someone who fits all three of those labels, I have surely been in workshops, conferences, and panels where the broader diversity of the field is absent. And because it’s such a strange and interdisciplinary area, it is very easy to not know about really interesting people doing cool work in some corner or other, and to just fall back on the same default set of citations, hiring practices, invite lists, etc. And that’s a problem of representation that a lot of folks have rightly been talking about – not only in scholarship on notations, of course, but across the academy.

#ReckoningWith aims to start / continue these discussions by highlighting recent work that hasn’t been or wouldn’t often be recognized in the field of notations (broadly understood). I aim especially (though not exclusively) to highlight work by women, untenured / contingent / early-career scholars, and members of minoritized groups in the academy. This isn’t to say that I agree with everything in all of these papers (how could that possibly be so?) but I think they’re worth reading and thinking about. I restricted myself to one article/paper per author, and to work that could be accessed digitally. One known restriction is that I decided to limit my initial selection to English-language material, but there is a case to be made that a more expansive range of languages would further serve these goals. Some of these links will require an institutional subscription, unfortunately – the burden of the paywall is another serious problem, for another day.

If you know of other work that fits these sorts of criteria, definitely let me know.

Here they are, as originally featured on Twitter, in no particular order:

Franka Brueckler and Vladimir Stilinović (2019) discuss the teaching of nondecimal bases in 18th and 19th century European mathematics textbooks. An Early Appearance of Nondecimal Notation in Secondary Education. https://doi.org/10.1007/s00283-019-09960-1

Jocelyn Ahlers (2012) discusses the now-dormant octo-decimal system for counting beads in Elem Pomo in relation to language revitalization. Two eights make sixteen beads: Historical and contemporary ethnography in language revitalization. https://doi.org/10.1086/667450

Paul Keyser (2015) discusses variation in the word order of tens and ones in classical Greek literary texts and its relationship to commercial numeracy. Compound Numbers and Numerals in Greek. https://doi.org/10.1353/syl.2015.0002

Alessandra Petrocchi (2019) compares the transmission of decimal place-value concepts in medieval Sanskrit and Latin mathematical texts. Medieval Literature in Comparative Perspective: Language and Number in Sanskrit and Latin. https://doi.org/10.1525/jmw.2019.120004

Rebecca Benefiel (2010) analyzes fascinating graffiti from Pompeii including ones with Roman numerals, tallying, and numerical play. Dialogues of ancient graffiti in the House of Maius Castricius in Pompeii. https://www.jstor.org/stable/20627644

Luis Miguel Rojas-Berscia @luiberscia and Rita Eloranta (2019) analyze numeral classifiers in South American languages that use counting devices. The Marañón-Huallaga exchange route:‘Stones’ and ‘grains’ as counting devices. https://doi.org/10.20396/liames.v19i0.8655449

Philip Boyes @PhilipJBoyes (2019) analyzes the early Ugaritic cuneiform alphabet as a vernacular resistance strategy to Hittite imperialism. Negotiating Imperialism and Resistance in Late Bronze Age Ugarit: The Rise of Alphabetic Cuneiform. https://doi.org/10.1017/S0959774318000471

Nina Semushina @feyga_tzipa and Azura Fairchild (2019) compare iconicity and handshapes in the numeral systems of sign languages worldwide. Counting with fingers symbolically: basic numerals across sign languages. https://core.ac.uk/download/pdf/228149921.pdf

Gagan Deep Kaur (2019) investigates the symbolic code used by Kashmiri carpet weavers and its linguistic encoding. Linguistic mediation and code-to-weave transformation in Kashmiri carpet weaving. https://doi.org/10.1177/1359183519862585

Rafael Núñez, Kensy Cooperrider @kensycoop, and Jürg Wassmann (2012) work with Yupno speakers to show that the number line is not intuitive and universal. Number concepts without number lines in an indigenous group of Papua New Guinea. https://doi.org/10.1371/journal.pone.0035662

Mallory Matsumoto (2017) proposes a new representational strategy, orthographic semantization, in Maya hieroglyphic texts to transform phonograms into logograms. From sound to symbol: orthographic semantization in Maya hieroglyphic writing. https://doi.org/10.1080/17586801.2017.1335634

Beau Carroll and co-authors (2019) discuss literate and inscriptional practices using the Cherokee syllabic script in an Alabama cave. Talking stones: Cherokee syllabary in Manitou Cave, Alabama. https://doi.org/10.15184/aqy.2019.15

Tareq Ramadan (2019) analyzes the origin of early Islamic epigraphic and iconographic conventions as a tool of political unification. Religious Invocations on Umayyad Lead Seals: Evidence of an Emergent Islamic Lexicon. https://doi.org/10.1086/704439

Jessica Otis @jotis13 (2017) shows that the adoption of Western numerals in early modern England was linked to increasing literacy. “Set Them to the Cyphering Schoole”: Reading, Writing, and Arithmetical Education, circa 1540–1700. https://doi.org/10.1017/jbr.2017.59

Joanne Baron (2018) analyzes the monetization of cacao beans and textiles among the Classic Maya as a numerate practice. Making money in Mesoamerica: Currency production and procurement in the Classic Maya financial system. https://doi.org/10.1002/sea2.12118

Karenleigh Overmann (2015) undertakes a massive cross-cultural comparison of grammatical number systems (singular/plural, e.g.) and numeral systems. Numerosity structures the expression of quantity in lexical numbers and grammatical number. https://doi.org/10.1086/683092

Xiaoli Ouyang (2016) outlines the origin of a hybrid sexagesimal (base-60) place value notation in an Ur III period cuneiform tablet. The Mixture of Sexagesimal Place Value and Metrological Notations on the Ur III Girsu Tablet BM 19027. https://doi.org/10.1086/684975

Melissa Bailey @MelissannBee (2013) uses evidence from Pompeii and Roman literary sources to discuss the link between Roman money and numerical practice. Roman Money and Numerical Practice. https://www.persee.fr/doc/rbph_0035-0818_2013_num_91_1_8413

Cheryl Periton @cherylperiton (2015) replicates and evaluates the algorithms of the medieval English counting table. The medieval counting table revisited: a brief introduction and description of its use during the early modern period. https://doi.org/10.1080/17498430.2014.917392

David Landy, Noah Silbert and Aleah Goldin (2013) show experimentally that respondents estimate large numbers relying heavily on the structure of their number word systems. Estimating large numbers. https://doi.org/10.1111/cogs.12028

Regina Fabry (2019) analyzes arithmetical cognition as an enculturated, embodied, adaptable practice. The cerebral, extra-cerebral bodily, and socio-cultural dimensions of enculturated arithmetical cognition. https://doi.org/10.1007/s11229-019-02238-1

Yoshio Saitô (2020) investigates the use of the Coptic/Egyptian zimam numerals in the Leiden Manuscript, a 14th century Turkic-Mongolic glossary. A Note on a Note: The Inscription in ‘the Leiden Manuscript’of Turkic and Mongolic Glossaries. https://doi.org/10.1163/1878464X-01101003

Jay Crisostomo @cjcrisostomo (2016) discusses Old Babylonian scribal education and copying practices to analyze text-building practices. Writing Sumerian, Creating Texts: Reflections on Text-building Practices in Old Babylonian Schools. https://doi.org/10.1163/15692124-12341271

John C. Ford (2018) analyzes variation in the use of Roman numerals and number words in the Middle English verse romance, Capystranus. Two or III Feet Apart: Oral Recitation, Roman Numerals, and Metrical Regularity in Capystranus. https://doi.org/10.1007/s11061-018-9567-7

Anna Judson @annapjudson (2019) examines orthographic practices in Linear B (Mycenaean) texts to analyze diachronic change and sociolinguistic variation. Orthographic variation as evidence for the development of the Linear B writing system. https://doi.org/10.1075/wll.00025.jud

Tazuko Angela van Berkel @TazukoVanBerkel (2016) investigates the rhetoric of oral arithmetic and numeracy in two classical Greek courtroom speeches. Voiced Mathematics: Orality and Numeracy. https://doi.org/10.1163/9789004329737_016

Piers Kelly @perezkelly (2018) shows that the literate practices of local Southeast Asian scripts serve as technologies of resistance. The art of not being legible. Invented writing systems as technologies of resistance in mainland Southeast Asia. https://doi.org/10.4000/terrain.17103

Ting Lan and Zhanchuan Cai (2020) propose a new use for nonstandard, complex number bases in encoding information for digital image processing. A Novel Image Representation Method Under a Non-Standard Positional Numeral System. https://doi.org/10.1109/TMM.2020.2995258

Perry Sherouse (2014) investigates how Russian numerals, rather than vigesimal Georgian numerals, became naturalized in the context of Georgian telecommunications. Hazardous digits: telephone keypads and Russian numbers in Tbilisi, Georgia. https://doi.org/10.1016/j.langcom.2014.03.001

Helena Miton @HelenaMiton and Olivier Morin (2019) show that more complex European heraldic motifs are more, not less, frequent than simple ones. When iconicity stands in the way of abbreviation: No Zipfian effect for figurative signals. https://doi.org/10.1371/journal.pone.0220793

Josefina Safar and colleagues (2018) analyze variation in the structure of number words in Yucatec Maya sign languages including unusual signs for 20 and 50. Numeral Variation in Yucatec Maya Sign Languages. https://doi.org/10.1353/sls.2018.0014

Bill Mak (2018) analyzes an expansive Greco-Indian astronomical text (jyotiṣa) to show the relationship of Indian and Hellenistic exact sciences. The First Two Chapters of Mīnarāja’s Vrddhayavanajātaka. https://doi.org/10.14989/230621

Lucy Bennison-Chapman (2019) analyzes Neolithic Mesopotamian clay tokens as multifunctional recording devices, not specialized counting tools. Reconsidering ‘Tokens’: The Neolithic Origins of Accounting or Multifunctional, Utilitarian Tools? https://doi.org/10.1017/S0959774318000513

Nerea Fernández Cadenas (2020) analyzes Iberian Visigothic-era slate inscriptions not as Roman numerals but as a local, community-developed numerical system. A critical review of the signs on Visigothic slates: challenging the Roman numerals premise. https://doi.org/10.1080/17546559.2020.1853790

Malgorzata Zadka (2019) outlines a theory that Linear B inscriptions are of mixed syllabic and semasiographic character, as part of an overall communication strategy. Semasiographic principle in Linear B inscriptions. https://doi.org/10.1080/17586801.2019.1588835

Andrea Bréard and Constance Cook (2020) analyze numerical patterns on Shang Dynasty and later artifacts to show continuity in divinatory practices. Cracking bones and numbers: solving the enigma of numerical sequences on ancient Chinese artifacts. https://doi.org/10.1007/s00407-019-00245-9

Zhu Yiwen (2020) discusses the counting-rod diagrams and notations of the 13th century Chinese Mathematical Book in Nine Chapters. On Qin Jiushao’s writing system. https://doi.org/10.1007/s00407-019-00243-x

Jeannette Fincke et al. (2020) discuss a Babylonian astronomical text with a previously undescribed way of representing zero. BM 76829: A small astronomical fragment with important implications for the Late Babylonian Astronomy and the Astronomical Book of Enoch. https://doi.org/10.1007/s00407-020-00268-7

Manuel Medrano (2020) discusses variation in Andean khipu reading in relation to colonial-era textual references. Testimony from knotted strings: An archival reconstruction of early colonial Andean khipu readings. https://doi.org/10.1080/02757206.2020.1854749

Five great 2014 articles on number systems

The scholarship on numbers is, as always, disciplinarily broad and intellectually diverse, which is why it’s so much fun to read even after fifteen years of poking at it.  This past year saw loads of great new material published on number systems, ranging from anthropology, linguistics, psychology, history of science, archaeology, among others.  Here are my favourite five from 2014, with abstracts:

Barany, Michael J. 2014. “Savage numbers and the evolution of civilization in Victorian prehistory.The British Journal for the History of Science 47 (2):239-255.

This paper identifies ‘savage numbers’ – number-like or number-replacing concepts and practices attributed to peoples viewed as civilizationally inferior – as a crucial and hitherto unrecognized body of evidence in the first two decades of the Victorian science of prehistory. It traces the changing and often ambivalent status of savage numbers in the period after the 1858–1859 ‘time revolution’ in the human sciences by following successive reappropriations of an iconic 1853 story from Francis Galton’s African travels. In response to a fundamental lack of physical evidence concerning prehistoric men, savage numbers offered a readily available body of data that helped scholars envisage great extremes of civilizational lowliness in a way that was at once analysable and comparable, and anecdotes like Galton’s made those data vivid and compelling. Moreover, they provided a simple and direct means of conceiving of the progressive scale of civilizational development, uniting societies and races past and present, at the heart of Victorian scientific racism.

Bender, Andrea, and Sieghard Beller. 2014. “Mangarevan invention of binary steps for easier calculation.Proceedings of the National Academy of Sciences 111 (4):1322-1327.

When Leibniz demonstrated the advantages of the binary system for computations as early as 1703, he laid the foundation for computing machines. However, is a binary system also suitable for human cognition? One of two number systems traditionally used on Mangareva, a small island in French Polynesia, had three binary steps superposed onto a decimal structure. Here, we show how this system functions, how it facilitated arithmetic, and why it is unique. The Mangarevan invention of binary steps, centuries before their formal description by Leibniz, attests to the advancements possible in numeracy even in the absence of notation and thereby highlights the role of culture for the evolution of and diversity in numerical cognition.

Berg, Thomas, and Marion Neubauer. 2014. “From unit-and-ten to ten-before-unit order in the history of English numerals.Language Variation and Change 26 (1):21-43.

In the course of its history, English underwent a significant structural change in its numeral system. The number words from 21 to 99 switched from the unit-and-ten to the ten-before-unit pattern. This change is traced on the basis of more than 800 number words. It is argued that this change, which took seven centuries to complete and in which the Old English pattern was highly persistent, can be broken down into two parts—the reordering of the units and tens and the loss of the conjoining element. Although the two steps logically belong to the same overall change, they display a remarkably disparate behavior. Whereas the reordering process affected the least frequent number words first, the deletion process affected the most frequent words first. This disparity lends support to the hypothesis that the involvement or otherwise of low-level aspects of speech determines the role of frequency in language change (Phillips, 2006). Finally, the order change is likely to be a contact-induced phenomenon and may have been facilitated by a reduction in mental cost.

MacGinnis, John, M Willis Monroe, Dirk Wicke, and Timothy Matney. 2014. “Artefacts of Cognition: the Use of Clay Tokens in a Neo-Assyrian Provincial Administration.Cambridge Archaeological Journal 24 (2):289-306.

The study of clay tokens in the Ancient Near East has focused, for the most part, on their role as antecedents to the cuneiform script. Starting with Pierre Amiet and Maurice Lambert in the 1960s the theory was put forward that tokens, or calculi, represent an early cognitive attempt at recording. This theory was taken up by Denise Schmandt-Besserat who studied a large diachronic corpus of Near Eastern tokens. Since then little has been written except in response to Schmandt-Besserat’s writings. Most discussions of tokens have generally focused on the time period between the eighth and fourth millennium bc with the assumption that token use drops off as writing gains ground in administrative contexts. Now excavations in southeastern Turkey at the site of Ziyaret Tepe — the Neo-Assyrian provincial capital Tušhan — have uncovered a corpus of tokens dating to the first millennium bc. This is a significant new contribution to the documented material. These tokens are found in association with a range of other artefacts of administrative culture — tablets, dockets, sealings and weights — in a manner which indicates that they had cognitive value concurrent with the cuneiform writing system and suggests that tokens were an important tool in Neo-Assyrian imperial administration.

Sherouse, Perry. 2014. “Hazardous digits: Telephone keypads and Russian numbers in Tbilisi, Georgia.Language & Communication 37:1-11.

Why do many Georgian speakers in Tbilisi prefer a non-native language (Russian) for providing telephone numbers to their interlocutors? One of the most common explanations is that the addressee is at risk of miskeying a number if it is given in Georgian, a vigesimal system, rather than Russian, a decimal system. Rationales emphasizing the hazards of Georgian numbers in favor of the “ease” of Russian numbers provide an entrypoint to discuss the social construction of linguistic difference with respect to technological artifacts. This article investigates historical and sociotechnical dimensions contributing to ease of communication as the primary rationale for Russian language preference. The number keypad on the telephone has afforded a normative preference for Russian linguistic code.

XLent LInguistics

As was correctly answered in the comments to the previous post, I am now 40 years old (XL) and the next time that my age in Roman numerals will be the same length as my age in Western (Hindu-Arabic) numerals will be when I am 51 (LI).    49 is not a correct answer in this case because the Romans did not habitually use subtraction in this way; irregular formations like IL (49) and XM (1900) do sometimes occur irregularly, but normally one cannot ‘skip’ a power.  I can only be subtracted from V and X; X can only be subtracted from L and C; and C can only be subtracted from D and M.

As any schoolchild can tell you, one of the purported disadvantages of Roman numerals is that their numeral-phrases are long and cumbersome (e.g., 37 vs. XXXVII).  And of course, for many numbers that is true.  But for many other numbers (e.g., 2000 vs. MM) the Roman numeral is  equal in length or shorter than its Western numeral counterpart.     Note, in particular, that round numbers tend to be those that are shorter in Roman numerals; this is because, since the Roman numerals don’t have a 0, that numerals that in Western notation would have a 0 have nothing in their Roman counterpart.

Among numbers whose Roman numeral and Western numeral notations are exactly the same length, there doesn’t initially appear to be much of a pattern:

1, 5, 11, 15, 20, 40, 51, 55, 60, 90, 102, 104, 106, 109 …

but then we see a new sequence emerge –

111, 115, 120, 140, 151, 155, 160, 190 …

which are just the numbers in the sequence from 11-90 with an added C on the front, which makes sense, since you’re just adding a 1 in front of them, similarly.

You could be forgiven in thinking that these numerals come up frequently, since we’re in the midst of a giant cluster of years with this property –

… 2002, 2004, 2006, 2009, 2011, 2015, 2020 …

but then after that, it’s another 20 years before 2040.

Unsurprisingly, numerals containing 3 rarely have equal-length Roman equivalents and numerals containing 8 never do.     So once you get past 3000, these numbers become extremely rare.    Roman numerals don’t have a standard additive representation for 4000 and higher; you can write 4000 as MMMM, but normally one would expect a subtractive expression with M (1000) subtracted from 5000.  There are Roman numerals for 5000, 10000, 50000, 100000, etc., but they are extraordinarily rare, and the Romans during the Empire instead tended to place a bar (or vinculum) above an ordinary Roman numeral to indicate multiplication by 1000; thus,  IV=4000.  The addition of this feature creates a real conundrum: does the vinculum count as a sign or not?    If it does, then IVI=4001 has four signs; if not, then IVII=4002 does.

I’ll leave this aside and stop here to save all of our brains.   Thanks for playing!

 

 

The Case of the Missing Pi Day 4s

Yesterday was Pi Day, 3/14 (those who prefer days before months can have Pi Approximation Day, 22/7) and in celebration of this momentous annual event, I invited several of my American colleagues (who have learned to tolerate my numerical eccentricities) over to my house in Canada for an International Pi Day Pie Party, which was a great success.  And, of course, as befitting this event, we had Pie, complete with Pi (to two decimal places) on top:

It's blueberry!So far, so good.  (And for the record, it was very good).  There was only one problem: the local dollar store I went into had a very odd distribution of candle numerals: it had tons and tons of 0, 1, 2, and 9, some 3s, but no 4s, 5s, 6s, 7s, or 8s.  As a professional numbers guy, and also as a guy who needed a 4 for his pi(e), this was deeply disconcerting.

After a moment, I figured out why. Ordinarily, when stores buy products that come in different varieties from wholesalers, the default is to order the same amount of each variety.   In this case, the store had obviously ordered an equal amount of each numeral, but they were being purchased by consumers at different rates.    Now, there is nothing about the properties of the natural numbers that would lead to this observed distribution (if it were Benford’s Law in action, it would be 1 and 2 that would be in short supply). Rather, the explanation is a social one:   Many parents do not buy birthday candles for their child’s first, second, or third birthday, because, while, as my (thankfully childless) brother noted, “Babies love fire!”, parents of toddlers do not.    At the other end, by the time your kid is about 9, and certainly by the double digits, they’ve probably outgrown the ‘giant novelty numeral candle’ phase of their lives.  Ages 4-8 are the sweet spot, and thus these sell out much more quickly.

I also note that, for adults, decadal birthdays like 20 and 30 tend not to attract much numerological attention, whereas 40, 50, and 60 certainly do (not so sure about 70 and 80), and by 90 most of the clientele is deceased.    This doesn’t explain why there were so many 0s available – perhaps purchasers are aware of this phenomenon and order extra zeroes, but don’t take account of differential demand for the tens digits.

Now, if we lived in a perfect world where suppliers and store owners had full information about their stock and made perfectly rational decisions, purchasers would notice such discrepancies and perhaps order more of the missing numerals.  The local dollar store, however, does not occupy such a world.  Fortunately, this being Windsor, Ontario, there was another dollar store across the street, and while it also had a skewed distribution, lo and behold, it did have one lonesome 4 for purchase (seen above).   Thus my Friday Pi Day pi display supply foray was saved.  Yay! (Try saying that in Pig Latin.)

Actually, this is not the first time I had encountered this phenomenon.  Back in 2008, when American gas prices first regularly began to hit $4.00 a gallon, the New York Times reported on, of all things, a shortage of numeral 4s, because their number sets were purchased with an equal distribution across all ten digits (presumably with extra 2s and 3s purchased individually to deal with those dollar amounts).  Once that leading digit got to 4, there was a temporary shortage, leading to some store owners writing their own makeshift 4s until new ones could arrive.

Thus, while we think of linguistic and symbolic resources like numerals as being effectively infinite, in contexts like these, you can indeed have shortages and surpluses.   Thankfully, now that we’re on to the Ides of March and our Pi Day shortage is dealt with for another year, I can store these candles for future use, if I want.  The pie, on the other hand, has gone to a better place.  Because, while you may sometimes need to ration your fours, let’s hope we never live in a world where we have to ration pie.

What’s so improper about fractions?

Yesterday, as part of the Wayne State Humanities Center brownbag series, I gave a talk entitled, “What’s so improper about fractions? Mathematical prescriptivism at Math Corps”, based on my long-term ethnographic research in Detroit.   For those of you who might be interested, you can watch the video below (or on Youtube itself), and the powerpoint is available for download here.

Cistercian number magic of the Boy Scouts

“You know that in ancient times religion, astronomy, medicine, and magic were all mixed up so that it was difficult to tell the beginning of one and the ending of the other and to-day the Gypsies, hoboes, free masons, astronomers, scientists, almanacs, and physicians still use some of the old magical emblems.  So there is no reason why the boys of to-day should be debarred from using such of the signs as may suit their games or occupations and we will crib for them the table of numerals from old John Angleus, the astrologer.  He learned them from the learned Jew, Even Ezra, and Even Ezra learned them from the ancient Egyptian sorcerers, so the story goes; but the reader may learn them from this book.” (Beard 1918: 91)

So begins the chapter, “Numerals of the Magic: Ancient System of Secret Numbers”, by Daniel Carter Beard in his 1918 volume The American boys’ book of signs, signals, and symbols, which you can download from Google Books for free.  Beard was one of the founders of the Sons of Daniel Boone in the early 20th century, which merged with the Boy Scouts of America (of which Beard was a key founder) in 1910 when that famous group was formed.  Beard wrote a number of popular books intended for boys in the Scouting movement, including this one.   Scouting books today do not, as a rule, make reference to esoteric Egyptian sorcery or Freemasonry or ‘John Angleus’ (who is Johannes Engel (1453-1512)) or ‘the learned Jew, Even Ezra’ (Abraham ibn Ezra (1089-1164)), or, for that matter, have a chapter on number magic at all.   At least, I never heard about it, and I was in Scouts for over a decade.  But we are fortunate that this one did, because it has a couple of real treasures inside, not previously recognized as such.

Let’s take the second one first.  It appears on p. 92 immediately following the passage I just quoted:

Beard18-p92

(Beard 1918: 92)

For those of you familiar with my book Numerical Notation, these are the numerals used primarily by Cistercian monks from the 13th – 15th centuries, and thereafter described in early modern numerology and astrology for several centuries, though largely at that point as an intellectual curiosity rather than a practical notation.    David King’s wonderfully detailed Ciphers of the Monks (King 2001), which is one of the few books at that price point (somewhere around $150, if I recall) that may be worth it, lists every example the author could find of these numerals, from medieval astrolabes to Belgian wine barrels to 20th-entury German nationalist texts.    It’s extremely comprehensive.  However, it does not mention Beard’s book – and why should it? What a bizarre place to find such a numerical system!   It’s what I describe as a ciphered-additive system, which is to say that there is no zero because none is needed: there is a distinct sign for each of 1-9, 10-90, 100-900, and 1000-9000.   The Cistercian numerals are a little anomalous typologically; another interpretation of them would be that they are positional, but use rotational rather than linear position – the signs for 9, 90, 900, and 9000 (e.g.) are rotations or flips of one another, so we could consider them the same sign (9) in four different orientations.     Zero is superfluous (thus not present) because unlike linear texts, there is no ‘gap’ to be accounted for by an empty place-value.

I became curious and tried to figure out why Beard attributed these to ‘Angleus’ and to ‘Even Ezra’.    Engel’s Astrological Optics was translated into English (1655) but contains no Cistercian numerals, and King doesn’t note him as using or depicting the system.  Similarly, ibn Ezra was not a known user of the system.   And I haven’t even been able to find any other source that attributes the system to those individuals; rather, it’s almost always Agrippa of Nettelsheim or Regiomontanus who are invoked in the scholarship.  We know that Beard was a Freemason, so he may have had access to some Masonic texts that said as much, but I can’t find any such reference, and King doesn’t mention any likely sources either, although he does note that many Masons (especially in France) were familiar with the Cistercian system.    So it’s not entirely clear where Beard learned about the system (although see below), and he’s got a lot of things mixed up in the account.

The other numerical treasure in Beard’s book is even more fascinating, although it appears in the previous chapter on codes and ciphers and is less prominent, on p. 85, the ‘tit-tat-toe’ numerals:

beard18-p85

(Beard 1918: 85)

So what we see here, again, is a ciphered-additive decimal system in which there is a ‘family resemblance’ between 9, 90, 900, and 9000 (and the other numbers so patterned), but no zero.  The signs are designed after their place in a hash / tic-tac-toe / octothorpe with the power indicated through ornamentation.  As a ciphered-additive system, it’s like the Cistercian numerals (although the signs are completely different) but instead of placing signs around a vertical staff, the signs are constructed into a box.  Note that the signs in each numeral-phrase are not strictly ordered, but are packed compactly in whatever way suits the resulting box aesthetically. This is one of the advantages of ciphered-additive systems that, if desired, for cryptographic purposes or for any other reason, the signs can be re-ordered without loss of numerical meaning.   But I know of no system quite like this, where numerals are arranged in a box-like shape, or where there is such a novel means of forming individual signs.

Beard is explicit that this system is newly designed: “The tit-tat-toe system of numerals here shown for the first time is entirely new and possesses the advantage of being susceptible of combinations up to four figures which suggests nothing to the uninitiated but a sort of Japanese form of decoration”  (Beard 1918: 84).   He claims that the alternate name ‘Cabala’ is just another name for the tit-tat-toe, which is a highly dubious claim, but he is clearly trying to invoke a connection between his newly-developed system and Jewish mysticism – in the hope that Boy Scouts will use it as a numerical code.  Ciphered-additive numerals are rare enough in the modern era – most of the systems are obsolescent at best.  So it’s fascinating to see a twentieth-century system right at the moment of its development.   It’s also fascinating to see how mystical, spiritual, and numerological knowledge from early-modern authors is incorporated into a manual for Boy Scouts and recommended for use in cryptography.

We’re not quite done, though.  Based on some of the (otherwise uncited) quotations in Beard’s book, I concluded that he was taking some of his ‘insight’ about the ‘Cabala’ from L.W. De Laurence’s Great Book of Magical Art (1915), which was a popular American book of spiritualism and Oriental mysticism at the time.  And, looking into de Laurence’s book, lo and behold, what did I find?

(De Laurence 1915: 174)

(De Laurence 1915: 174)

De Laurence, whose work is also not noted by King, gives a more standard attribution than does Beard for what we now know to be the Cistercian numerals: he attributes them to the ‘Chaldeans’, which is a very common descriptor for the system and is even found in the scholarly literature.  He doesn’t mention Angelus or Even Ezra or any other of the medieval and early modern authors who use the system, so it’s still a mystery how Beard made that attribution.  But, given that there really are not a lot of texts that discuss this system at all, I suggest that Beard encountered them through De Laurence and possibly confounded their origin with some other understandings he had picked up along the way, possibly through Masonic writings.

It’s not every day that I discover a new numerical notation system, and it’s great to do that, even when it’s one that  seems to have been developed once but never adopted more widely.   So it was neat to find the ‘tit-tat-toe’ system, even if it never appeared anywhere else.  But I also found it fascinating to track the transmission of the much more widespread (but still under-appreciated) Cistercian numerals through their roundabout path to a Scouting manual for boys.    As King’s book amply demonstrates, the system has a tendency to show up in the oddest places, so perhaps we should (ahem) ‘be prepared’ to find them anywhere.

Beard, Daniel Carter. 1918. The American boys’ book of signs, signals and symbols. Philadelphia: Lippincott.

De Laurence, L. W. 1915. The great book of magical art, Hindu magic and East Indian occultism. Chicago, Ill., U. S. A.: De Laurence Co.

King, David A. 2001. The ciphers of the monks: a forgotten number-notation of the Middle Ages. Stuttgart: F. Steiner.

The mystical Eye of Horus / capacity system submultiples

Here is a story about number systems:

The wd3t is the eye of the falcon-god Horus, which was torn into fragments by the wicked god Seth.  Its hieroglyphic sign is made up of the fractional powers of 2 from 1/2 to 1/64, which sum to 63/64.  Later, the ibis-god Thoth miraculously ‘filled’ or ‘completed’ the eye, joining together the parts, whereby the eye regained its title to be called the wd3t, ‘the sound eye’.   Presumably the missing 1/64 was supplied magically by Thoth.

 

500px-Oudjat.SVG

Source: wikimedia.org

This is my retelling, using many of the same phrases, of Sir Alan Gardiner’s account of the ‘eye of Horus’ symbol used for notating measures of corn and land in his classic Egyptian Grammar (§ 266.1; 1927: 197).   It’s a nice story, and it is repeated again and again, not only in wacky Egypto-mystical websites but in a lot of serious scholarly work up to the present day.   I talk about it in Numerical Notation.   But is it true? Well, that depends what you mean by ‘true’, but mostly the answer is: not really.  As I mentioned in a post back in 2010, this is certainly not the origin of the symbols.  Jim Ritter (2002) has conclusively shown that these are ‘capacity system submultiples’, which originated in hieratic texts, not hieroglyphic ones, and appear to have had non-religious meanings originally.     Even while insisting on the mythico-religious origin of the Horus-eye fractions, Gardiner himself (1927: 198) is crystal clear that all the earliest ‘corn measures’ are hieratic.  The hieratic script is very different in appearance and character than the hieroglyphs, being the everyday cursive script of Egyptian scribes, rather than the monumental and more formal hieroglyphs.   Ritter shows conclusively that in their origin, and their written form, and their everyday use, the capacity system submultiples have nothing to do with the Eye of Horus.

Ritter distinguishes this “strong” thesis from a “weak” version, in which, many centuries after their invention, the hieratic capacity system submultiples were imported into the hieroglyphic script and that some scribe or scribes wrote about them as if they could be combined into the wedjat hieroglyph.  This weak version has more evidence for it, but as Ritter points out (2002: 311), this “does not automatically mean that ‘the Egyptians’ thought like that; for example, those Egyptians whose task it was to engrave hieroglyphic inscriptions on temple walls.  Theological or any other constructs of one community do not necessarily propagate to every other; the Egyptians were no more liable than any other people to speak with a single voice.”  This is a sociolinguistically-complex, reflective view that I think is essentially correct, and which I adopt in my work (although I would rewrite it today to be even clearer, as I hope I have above).   Ritter is not fully convinced by the weak thesis either, but acknowledges that it is tenable.

Ultimately, as Ritter concludes (correctly), our willingness to buy into the ‘Horus-eye fractions’ model tells us a lot about how we view the hieroglyphs, and Egyptian writing in general, as mythically-imbued and pictorial in nature, and ultimately reflects a mythologized view of Egyptians as a ‘mystical’ people, an ideology that goes back to the Renaissance and earlier in Western thought (Iversen 1961).  But I would go further, because it is about more than just Egypt.   We like stories that give numerological explanations for numerical phenomena, regardless of their veracity, and especially where the numerical system under consideration is from societies we conceptualize as having a more mystical or mysterious relationship with the world than we purportedly do.   Very often we are projecting our image of what is going on.  This isn’t to say that Gardiner’s description is wrong – he knew the texts better than almost anyone, and correctly identifies how the system worked and the texts in which it was found.  But it’s important that when (some) Egyptians transliterated the capacity system submultiples from hieratic to hieroglyphic writing and formed them into the wedjat, they were repurposing and transforming a pre-existing set of signs that had no mystical origin whatsoever.   It deserves our attention, both for what it tells us about Egyptian life  and also for its importance for the historiography of science, mathematics, and religion in non-Western societies.

(Thanks to Dan Milton, who as the winner of the contest last week asked the question that motivates this post.)

Gardiner, Alan H. 1927. Egyptian grammar: being an introduction to the study of hieroglyphs. Oxford: Clarendon Press.
Iversen, Erik. 1961. The myth of Egypt and its hieroglyphs in European tradition. Copenhagen: Gad.
Ritter, Jim. 2002. “Closing the Eye of Horus: The Rise and Fall of ‘Horus-eye fractions’.” In Under One Sky: Astronomy and Mathematics in the Ancient Near East, edited by John M. Steele and Annette Imhausen, 297-323. Münster: Ugarit-Verlag.